
Exercises with Lecture 1 of Topology in Physics

(UvA/Mastermath 2018)

February 6, 2018

This is the sheet of exercises corresponding to the material covered in
the first lecture of the 6th of February. It is recommended that you make
all exercises on the sheet even though only the exercises with a ? are graded
and will count towards the final grade. The homework should be handed in
by (in order of preference):

1 E-mailing the pdf-output of a LATEX file to n.dekleijn@uva.nl;

2 E-mailing a scanned copy of a hand-written file to n.dekleijn@uva.nl;

3 Depositing a hard-copy of the pdf-output of a LATEX file in my mailbox
(Niek de Kleijn) at Science Park 107, building F, floor 3;

4 Depositing a hand-written file in my mailbox (Niek de Kleijn) at Science
Park 107, building F, floor 3;

5 Giving it to one of the teachers in person (at the beginning of the lecture).

You will receive comments on all the exercises you hand in (not
just the homework) and we advise you to make use of this option.

There are two moments to hand in these exercises. Either on Friday
the 9th of February (if using option 3,4 this should be done before 5pm)
or before the lecture (so not the exercise class) on Tuesday the 13th of
February. A selection of the exercises that are handed in on Friday the 9th
will be discussed at the beginning of the exercise class on Tuesday the 13th
and you will receive the graded/commented exercises during the exercise
classes on Tuesday the 20th of February. In short we offer the option
of handing in exercises early so that you may get comments when
they are more relevant.
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Figure 1: The mechanism behind window wipers 1

Exercises

Exercise 1

So-called “hinge mechanisms” are mathematically idealized versions of con-
structions like the windshield wiper fig. 1. They are given by a number of
ideal rods and hinges that connect them, some hinges are fixed to the under-
lying plane while others are only fixing two rods together. The configuration
space of a hinge mechanism consists of all the possible configurations such
that smooth paths on the configuration space correspond to smooth tran-
sitions of configurations. For an illustration consider the animation of the
“double pendulum” alongside the 2-torus (its configuration space). Con-
figuration spaces of hinge mechanisms are often smooth manifolds, eg. the
n-torus is the configuration space of the n-pendulum. Note in particular
that the configurations of an inherently 2-dimensional hinge mechanism can
easily give rise to a much higher dimensional manifold.

i Consider the hinge mechanism consisting of 3 rods of length 1 and 1 rod
of length

√
5 attached to each other cyclically and such that one of the

rods of length 1 attached to the rod of length
√

5 is fixed to the plane
at both end points, see figure 2.

Show that the configuration space is isomorphic to S1. You may show
this is a “heuristic” way using computer graphing software if necessary.

ii Consider the same hinge mechanism as in [i], but where all rods are of
length 1 (see video).

a Show that the configuration space is a smooth manifold only after
removing three points.

1image from http://www.etudes.ru/en/etudes/windscreen-wiper/
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Figure 2: The Hinge mechanism (1;
√

5, 1, 1).

b Draw the configuration space and the configurations corresponding
to the points that should be removed.

c What goes wrong at those points?

Exercise 2

Consider the unit 2-sphere S2 ⊂ R3 given by all points (x, y, z) ∈ R3 such
that

x2 + y2 + z2 = 1

and show that it is a smooth manifold by exhibiting an atlas.
(Hint: How does one translate between a globe and a (flat) world map?)

Exercise 3

Suppose M is a smooth manifold equipped with charts {Ui}ri=1 such that
M = ∪ri=1Ui. Assume the existence of a partition of unity subordinate to
{Ui}ri=1. Such a partition of unity is given by a collection of smooth functions
{fi}ri=1 on M such that

∑r
i=1 fi(m) = 1 for all m ∈ M , the functions take

values in [0, 1] and suppfi ⊂ Ui. The support suppf of a smooth function
f is defined as the closure of the set {m ∈ M |f(m) 6= 0}. An embedding
F : M → N is a smooth injective map such that TxF is also injective for all
x ∈M .

i Show that there exists an embedding ι : M −→ RN for N ∈ N sufficiently
large.

(Hint: It is possible with N = r + rm where m is the dimension of M)

The exercise above asks you to prove an embedding theorem. In fact
many more powerful embedding theorems exist. Most notably the Whitney
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embedding theorem, telling us that we can take N = 2m where m is the
dimension of M and the Nash embedding theorem which tells us that we
may embed Riemannian manifolds isometrically. Partitions of unity can also
be proved to exist in far greater generality and thus the requirement that
the manifold M is finitely covered can be removed. The up-shot is that the
only manifolds that can occur are submanifolds of RN for some N ∈ N.

ii Explain why it is still useful to consider an intrinsic definition of smooth
manifolds that does not refer to some ambient RN .

? Exercise 4

The aim of this exercise is to show in an example how the local coordinate
(physicists’) point of view on differential forms and global coordinate-free
(mathematician’s) way of thinking can compliment each other. (The moral
is: learn both sides!) Let M be a smooth manifold and consider its cotangent
bundle T ∗M . Construct a 2-form ω ∈ Ω2(T ∗M) on the cotangent bundle in
two ways:

i (Local coordinates) Let (x1
α, . . . , x

n
α) be local coordinates on Uα ⊂ M .

These induce local coordinates (x1, . . . , xn, p1, . . . , pn) on T ∗Uα ⊂ T ∗M ,
where the pi are given as the coefficients of dxi, i.e. for ξ ∈ T ∗xM we
have ξ =

∑n
i=1 p

i(x)dxi. Define

ω|T ∗Uα =
∑
i

dpi ∧ dxi.

Show that this transforms correctly under changes in local coordinates
to define a global 2-form on T ∗M .

ii (Coordinate-free) Let π : T ∗M →M be the canonical projection, and
use this to define a 1-form λ by

λθ(X) := θ(Tθπ(X)), θ ∈ T ∗M, X ∈ Tθ(T ∗M).

Then define ω = dλ show that this defines the same 2-form as in i).

Exercise 5

Taken from exercise 4.3.1 in “differential forms in algebraic topology” by R.
Bott and L. Tu.

Let Sn(R) ⊂ Rn+1 denote the n-sphere of radius r ∈ R defined by the
equation

(x1)2 + . . .+ (xn+1)2 = R2.
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Let ωR,n be the n-form defined by

ωR,n =
n+1∑
i=1

(−1)i−1xi

R
dx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxn+1,

where the hat signifies omission.

a Compute the integral
∫
Sn(R) ωR,n and conclude that ωR,n is not exact.

b Consider the radius function r : Rn+1\{0} −→ R given by

r(x1, . . . , xn+1) =
√

(x1)2 + . . .+ (xn+1)2

and show that
dr ∧ ωr,n = dx1 ∧ . . . ∧ dxn+1.

? Exercise 6

Consider the “double pendulum” hinge mechanism given by two rods of
length 1 one of which is attached to the plane at one end point and attached
to the other rod at the other end point (see video). Note that a configuration
X is specified by the coordinates (x1, y1;x2, y2) of the end points of the rod
that is not fixed to the plane.

i Show that the functions fx(X) = x2−x1 and fy(X) = y2−y1 are smooth.

ii Show that α := −1
fy
dfx is a well-defined closed one-form.

iii Show that α is not exact.

Exercise 7

Definition 1 (Homotopy Equivalence).
A (smooth) homotopy equivalence between two manifolds M and N is given
by a pair of smooth maps

f : M −→ N and g : N −→M

such that f ◦g is smoothly homotopic to IdN and g◦f is smoothly homotopic
to IdM .

Note that homotopy equivalence defines an equivalence relation on smooth
manifolds, which we denote ∼h.

i Show that N ∼h M implies that H•
dr(N) ' H•

dR(M).

ii Complete the proof of the Poincaré lemma.
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In this exercise we will compute the cohomology of the 2-torus T2 by
decomposing it into parts of which we already know the cohomology.

iii As preparation we consider the circle T1 := S1 ↪→ C as embedded into the
complex plane. Then let us denote V1 := T1−{1} and Vi := T1−{i}.

a Show that V1 ∼h R ∼h Vi and V1 ∩ Vi ∼h R
∐

R (here
∐

denotes
the disjoint union).

b Show that H•
dr(M

∐
N) ' H•

dR(M)⊕H•
dR(N).

c Compute the cohomology of V1, Vi, V1 ∩ Vi.
d Use the Mayer–Vietoris sequence to compute the cohomology of T1.

iv Now let us move on to the 2-torus T2. We consider the flat model of
the 2-torus as the space R2/Z2, i.e. we consider the plane and identify
points (x1, y1) and (x2, y2) if x1 − x2 and y1 − y2 are both integers.

a Show that T2 is given by considering the square [0, 1] × [0, 1] ⊂ R2

and identifying the points (0, t) with (1, t) for t ∈ [0, 1] as well as
identifying the points (s, 0) with (s, 1) for s ∈ [0, 1].

a Bonus What does this model of T2 have to do with snake?

b Compute the cohomology of T2 by decomposing it into two open
subsets Uo and Um such that you already know the cohomology of
Um, Uo and Um ∩ Uo and applying the Mayer–Vietoris sequence.
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